“Uphill” cation transport: A bioinspired photo-driven ion pump

نویسندگان

  • Zhen Zhang
  • Xiang-Yu Kong
  • Ganhua Xie
  • Pei Li
  • Kai Xiao
  • Liping Wen
  • Lei Jiang
چکیده

Biological ion pumps with active ionic transport properties lay the foundation for many life processes. However, few analogs have been produced because extra energy is needed to couple to this "uphill" process. We demonstrate a bioinspired artificial photo-driven ion pump based on a single polyethylene terephthalate conical nanochannel. The pumping process behaving as an inversion of zero-volt current can be realized by applying ultraviolet irradiation from the large opening. The light energy can accelerate the dissociation of the benzoic acid derivative dimers existing on the inner surface of nanochannel, which consequently produces more mobile carboxyl groups. Enhanced electrostatic interaction between the ions traversing the nanochannel and the charged groups on the inner wall is the key reason for the uphill cation transport behavior. This system creates an ideal experimental and theoretical platform for further development and design of various stimuli-driven and specific ion-selective bioinspired ion pumps, which anticipates wide potential applications in biosensing, energy conversion, and desalination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Highly copper(II) ion-selective transport through liquid membrane containing 1-(2-pyridylazo)-2-naphthol.

often an important process in industry and chemical analysis. Liquid-membrane transport in which the extraction and stripping operations are combined in a single process reduces the solvent inventory requirement, and also allows the use of expensive and highly selective extractions, which otherwise would be uneconomic in solvent extractants. For these reasons, liquid-membrane transport has attr...

متن کامل

Study the Transport Properties of Anion and Cation Exchange Membranes toward Various Ions Using Chronopotentiometry

The transport properties of various anion and cation exchange membranes were studied in different electrolyte solutions using chronopotentiometry technique to get insight about the influence of the counter ion on the transport properties of the membranes. The investigated samples include heterogeneous ion exchange membranes varying in the functionality of fixed charged gro...

متن کامل

INSECT MALPIGHIAN TUBULES: V-ATPase ACTION IN ION AND FLUID TRANSPORT.

Insect Malpighian tubules secrete fluid into the lumen as part of their function as excretory organs. The underlying ion transport is, when stimulated, faster than in any other known tissue. It is driven by the activity of an H+-transporting V-ATPase situated on the luminal cell membranes. This ATPase, together with cation/H+ antiporter(s), constitutes a common cation pump which can transport s...

متن کامل

Na+ + Cl- -gradient-driven, high-affinity, uphill transport of taurine in human placental brush-border membrane vesicles.

Uptake of taurine in human placental brush-border membrane vesicles was greatly stimulated in the presence of an inwardly-directed Na+ + Cl- -gradient and uphill transport of taurine could be demonstrated under these conditions. Na+ as well as Cl- were obligatory for this uptake and both ion gradients could energize the uphill transport. This Na+ + Cl- -gradient-dependent taurine uptake was sti...

متن کامل

Cation Exchange Nanocomposite Membrane Containing Mg(OH)2 Nanoparticles: Characterization and Transport Properties

In this study, ion exchange nanocomposite membranes was prepared by addition of Mg(OH)2 nanoparticles to a blend containing sulfonated polyphenylene oxide and sulfonated polyvinylchloride via a simple casting method. Magnesium hydroxide nanoparticles were synthesized via a facile sono-chemical reaction and were selected as filler additive in fabrication of ion exchange nanocomposite membranes. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016